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Stability with Large Step Sizes 
for Multistep Discretizations of Stiff 

Ordinary Differential Equations 

By George Majda* 

Abstract. In this paper we consider a large set of variable coefficient linear systems of ordinary 
differential equations which possess two different time scales, a slow one and a fast one. A 
small parameter E characterizes the stiffness of these systems. We approximate a system of 
ODE's in this set by a general class of multistep discretizations which includes both one-leg 
and linear multistep methods. We determine sufficient conditions under which each solution 
of a multistep method is uniformly bounded, with a bound which is independent of the 
stiffness of the system of ODE's, when the step size resolves the slow time scale but not the 
fast one. We call this property stability with large step sizes. 

The theory presented in this paper lets us compare properties of one-leg methods and linear 
multistep methods when they approximate variable coefficient systems of stiff ODE's. In 
particular, we show that one-leg methods have better stability properties with large step sizes 
than their linear multistep counterparts. This observation is consistent with results obtained 
by Dahlquist and Lindberg [11], Nevanlinna and Liniger [33] and van Veldhuizen [42]. Our 
theory also allows us to relate the concept of D-stability (van Veldhuizen [42]) to the usual 
notions of stability and stability domains and to the propagation of errors for multistep 
methods which use large step sizes. 

1. Introduction. Model equations (usually obtained through a linearization proce- 
dure) have played an extremely important role in assessing the behavior of a 
discretization of a system of stiff differential equations. The test equation, 

(1.1) dy/dt = Xy, X E C is a constant, 

has led to the concepts of A-stability [7], A(a)-stability [44], stiff-stability [18] and 
L-stability [13]. However, this model is too simple. Examples due to Gourlay [19] 
show that two different one-step methods with the same domain of absolute stability 
can have entirely different properties when they approximate the variable-coefficient 
test equation 

(1.2) dy/dt = X(t)y, X(t) E C for 0 < t < T. 

For this reason and others, Prothero and Robinson [36] introduced a theory for 
the stability and accuracy of one-step discretizations of stiff ODE's based on the 
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model equation 

(1.3) dy/dt = g'(t) + X(y - g(t)), 

where X is a complex constant with negative real part, ( )' denotes the derivative 
with respect to t, and g'(t) is any function that is defined and bounded for 
t E [0, T] where T is some constant. 

In several papers nonlinear systems of ODE's which satisfy a monotonicity 
condition have been used for model problems. See Dahlquist [8], Odeh and Liniger 
[35], Stetter [38], Burrage [3], Burrage and Butcher [4], Butcher [5], and Crouzeix [6]. 

In [4] and [17], the authors introduced the concepts of B-stability and B-conver- 
gence for discretizations of nonautonomous systems of ODE's which satisfy a 
one-sided Lipschitz condition. 

Most stiff systems, for example, the equations which arise in chemistry or electric 
circuit theory, have several components which respond with widely differing time 
constants. Furthermore, these components are usually coupled and both the cou- 
pling and the time constants are time dependent (cf. Bjurel et al. [2], Lapidus and 
Schiesser [25], or Willoughby [45]). Models (1.1)-(1.3), equations with monotone 
nonlinearities and an arbitrary class of equations which satisfy a one-sided Lipschitz 
condition do not adequately account for all these characteristics. Consequently, 
several authors, including Dahlquist [9], Miranker [31], [32], van Veldhuizen [40], 
[41], [42], and Stetter [37] have proposed more refined model equations for discreti- 
zations of stiff ODE's. Stetter suggested that an appropriate model equation should 
possess the following properties: 

(1) It should permit the simultaneous occurrence of slowly varying and rapidly 
varying solution components. 

(2) It should have a Jacobian matrix with a time-dependent eigensystem. 
(3) It should contain a small parameter to permit the consideration of a limit 

process corresponding to a transition to arbitrarily high stiffness. 
In this paper we will consider model linear systems of ODE's which satisfy 

properties (1)-(3). These equations are given by 

(1.4) dv/dt = A(t, E)v, 0 < t < T, 0 < E < Eo v(0) given, 

and 

(1.5) dy/dt = A(t, c)y + F(t, E), 0 < t < T, 0 < E < Eo, y(0) given, 

where A(t, E) is an n X n matrix, v, y, and F(t, E) are n-component vectors, and T, 
Eo are positive constants with -o << 1. A(t, E) and F(t, E) should satisfy the condi- 
tions in the following three assumptions: 

Assumption 1.1. There exists an invertible matrix T(t, E) with T(t, E), T-1(t, E) E 
CP(t, E, B),* *and p > 3 so that 

(1.6) T~~~~~1(t, c)A(t, c)T(t, E) 
= 11(Dlt~ ," ) 

(1.6) T = D l(t, E)/E.) D 

Here D11(t, E) E CP(t, E, B) is an m x m matrix with 1 < m < n, and D22(t, E) E 

CP(t, ,B) is an (n - m) X (n - m) matrix. 

* * All notation is defined in Appendix I. 
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Assumption 1.2. D11(t, E) is an invertible matrix for 0 < t < T and 0 < < Eo 

with D-1(t, E) E CP(t, E, B). Furthermore, the eigenvalues of D11(t, E), denoted by 
X i (t, E), i = 1,..., m, satisfy Ret Xi(t, E)} < 0, i = 1,..., m, and are distinct for 

0 < t < T and 0 < E< -0 
Assumption 1.3. T'(t, c)F(t, e) = (f1(t, )/E, fII(t, ))T, where f1(t, E) E 

CP(t, E, B) denotes an m-component vector and fII(t, E) E CP(t, E, B) denotes an 

(n - m )-component vector. 
An asymptotic decomposition for the solutions of systems (1.5) is easily obtained. 

The results in Hoppensteadt [20], Hoppensteadt and Miranker [21], and Kreiss [23] 
imply that if - is sufficiently small, then the solutions of systems (1.5) which satisfy 
the conditions in Assumptions 1.1-1.3 have an additive decomposition with the 
form 

(1.7) y(t, E) = ys(t, ) + yR (T, E) with X = t/E. 

yS(t, E) is a slowly varying solution of (1.5) with (p - 2) derivatives with respect to t 

bounded independently of E. yR(T, E) is a rapidly varying solution of (1.5) which is 
highly oscillatory (rapidly decaying) if Ret {i(t, E)} = 0, i = 1, . . ., m, (Ret Xi(t, E)} 

< 0, i = 1. n, m). Both ys(t, E) and yR(T, c) are uniquely determined up to terms 
O(E( (-2)). 

In order to compare the properties of various multistep methods, we will consider 
the general class of multistep approximations of (1.4) and (1.5) given by 

I' 

(1.8) E (aiI + kbiA(i(tn), E))Vn-i = 0, n = r, . I N, 
i =o 

and 

( (aiI + kbiA(Ti(tn), E))yfn-i + kY(To(tt) , Tr(tn), k, E) = 0, 

(1.9) i=O 

n =r,...,N. 

Here a,i bi, i = 0, . . ., r, denote given constants, k > 0 denotes a constant step size, 
t= nk, n = 0,1,...,N, Ti(t) E Cl(t,B), i = 0,...,r, Ti(t) = To(t) + 0(k) for 
i =1, . . ., r and 0 < t < T, 0 < Ti(t) < T for i = 0, . . ., r and tr < t < T, and 

Y(To(t),..., Tr(t), k, C) denotes a function which depends on F(Ti(t), C), i = 0,..., r. 
We will assume that F= 0 when F(t, C) 0 and that the coefficients in (1.8) and 
(1.9) are normalized so that ao = 1. We will refer to method (1.8) as the homoge- 
neous multistep method corresponding to method (1.9). 

Under special conditions, methods (1.9) lead to well-known classes of multistep 
methods. If we set Ti(t) = t - ik, i = 0,..., r, and F= >r 0 b F(t - ik, E), then 

(1.9) becomes 
r r 

(1.10) E (aiI + kbiA(tn-i, ))yn-i + k ? biF(tn-i, E) = 0, 
i=O i=O 

which is a linear multistep method. On the other hand, if we set Ti(t)= To(t)= 

Ei=0 bj(t - jk), i = 0,... , r, and F= F(T0(t), E), then (1.9) becomes 

(1.11) (aiI + kbiA bjt1i'l _1 y n- i + kF( bjt', _j E = O, 
i=O ~ j=o Cj = C 

which is a one-leg method. These methods were introduced by Dahlquist [8]. 
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In this paper we are particularly interested in the properties of discretizations (1.8) 
and (1.9) when the step size k resolves only the slow time scales in system (1.4) or 
(1.5) and not the fast ones. This is the typical situation for discretizations of stiff 
equations. Therefore, we are interested in the cases when E tends to zero for fixed 
k > 0 or k -* 0 with k/c bounded away from zero. (The limit process k/c -* 0 
would take us back to the well-known Dahlquist-Henrici theory of discretizations 
on "sufficiently fine" grids.) Consequently, the two parameters E and k will vary 
in the trapezoidal region 

(1.12) F = {(k,E) E R2: 0 < E < Eo and * < k < ko 
where a* and k0 are two positive constants (see Figure 1). 

E 

k = o E 

E ~ ~ ~ 
0 ~ ~ 

F 
_ ~~~~~~~~~~~~~~o 'k 

ko 

FIGURE 1 

Representation of the trapezoidal region F. 

Following the ideas and results in van Veldhuizen [40], [41], Stetter [37] suggested 
that a desirable discretization of a system (1.5) should satisfy two properties. First, 
each solution of the numerical method should be uniformly bounded with a bound 
which is independent of the stiffness of the equation. We formulate this requirement 
as 

Property 1.1. For some trapezoidal region F, each solution of (1.9), denoted by 
y n = O, . . ., N, should be uniformly bounded for all (k, c) E F. 

A multistep approximation of a system (1.5) which satisfies Property 1.1 is called 
a stable approximation of (1.5) with large step sizes. 

The second property pertains to the accuracy of the numerical solution. In 
particular, only the slow time scales in (1.5) are resolved by the step size while the 
fast scales are not resolved. Therefore, the numerical approximation of (1.5) should 
have a two-term decomposition corresponding to (1.7). The first term should 
approximate the slowly varying solution ys(t, c) in the decomposition (1.7) with 
some degree of accuracy. The second term should decay with time. This behavior of 
the second term is consistent with the properties of yR(T, E) when yR(T, E) is rapidly 
decaying. In the case when yR (T, E) contains rapidly oscillating components, this 
restriction assumes that the rapidly oscillating components have no interest and 
should be attenuated. We formulate this accuracy requirement as 

Property 1.2. For each value n = 0,1,..., N, yn should have the decomposition 
(1.13) y n+E 
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where y)" approximates ys(tn, E) uniformly well for all (k, E) E F, that is, 

(1.14) IIyS - ys(t n E) jj < Kl(k q + Eq2) when (k, -) E F, 

where K1 is some constant independent of k and - and ql, q2 are two positive 
integers. En should decay, that is, 

(1.15) IIEnll < K2 'n when (k, -) E F, 

where K2 and 0 < 8 < 1 are constants independent of k and E. 

In this paper, we apply the concept of stability domains together with the usual 
Dahlquist-Henrici stability theory to determine sufficient conditions under which a 
multistep approximation of (1.5) with the form (1.9) satisfies Property 1.1. One 
immediate consequence of this theory is that one-leg methods have better stability 
properties with large step sizes than their linear multistep counterparts when they 
approximate variable coefficient (and nonlinear) systems of stiff ordinary differen- 
tial equations. A second consequence of our theory is to relate the concept of 
D-stability (van Veldhuizen [42]) to the usual notions of stability and stability 
domains and to the propagation of errors for multistep methods which use large step 
sizes. Additional consequences are discussed in Sections 3 and 5. We determine 
sufficient conditions under which a multistep approximation of (1.5) satisfies Prop- 
erty 1.2 in a forthcoming paper using the techniques developed in [29]. 

The results in this paper either extend or complement known results in several 
ways. Van Veldhuizen [40], [41], established Properties 1.1 and 1.2 for a class of 
one-step methods using techniques which are entirely different from the ones 
presented in this paper. He was unable to extend his theory to multistep methods. 
Dahlquist and Lindberg [11] compared the stability, accuracy, and step changing 
properties of the implicit midpoint rule and the trapezoidal rule when these methods 
approximate stiff linear and nonlinear systems of ODE's. Kreiss [22] essentially 
determines sufficient conditions under which A(a)-stable linear multistep approxi- 
mations of systems (1.4) satisfy Property 1.1 when the matrix A(t, e) in (1.4) is of 
essentially diagonally dominant type. Kreiss's results cannot be extended to the class 
of systems (1.4) which satisfy Assumptions 1.1 and 1.2. (See van Veldhuizen [42] for 
details.) Dahlquist and Soderland [12] essentially establish Property 1.1 for a class of 
multistep and multistep compound discretizations of systems (1.5) which appear in 
singular perturbation form using the theory of G-contractivity. The systems (1.5) 
which we consider do not appear in singular perturbation form. Furthermore, we 
consider a class of multistep discretizations of (1.5) which is larger than the class of 
multistep discretizations considered by Dahlquist and Soderland. Finally, Abra- 
hamsson, Keller, and Kreiss [1] have established Properties 1.1 and 1.2 for a class of 
three-point difference approximations of some linear two-point boundary value 
problems which appear in singular perturbation form. 

This paper is organized in the following way: In Section 2 we consider multistep 
approximations of the special systems cdy/dt = D11(t, c)y, where D11(t, E) satisfies 
the conditions in Assumption 1.2. These systems govern the rapidly varying compo- 
nents of systems (1.4) and (1.5). We use properties of stability domains to determine 
a trapezoidal region F with the form (1.12), so that all solutions of a multistep 
approximation of these special systems decay with time when (k, E) E F. In Section 
3 we determine sufficient conditions under which a multistep approximation of 
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system (1.5) satisfies Property 1.1. We also present a thorough discussion of the 
practical implications of Property 1.1 for a multistep method. In Section 4 we relate 
the concept of D-stability (van Veldhuizen [42]) to the results obtained in Section 3. 
In Section 5 we present some numerical results. 

2. Multistep Approximations of the Unresolved Fast Scales. In this section we will 
consider multistep approximations of the special systems 

dw 
(2.1) ? dt = D11(t, )w, 0 < t < T, 0 < ? < ?09 w(O) given, 

where T and -0 << 1 are given constants and D11(t, 8) E CP(t, 8, B) with p > 1 is 
an m x m matrix which satisfies the conditions in Assumption 1.2. Systems (2.1) 
govern the rapidly varying components of systems (1.4) and (1.5). In particular, the 
results in [16] or [43] show that if -0 is sufficiently small, then for any integer 
O < v < p - 1 the solutions of (2.1) have an asymptotic decomposition with the 
form 

w(t) = diag(eJf)l.(Y,.)dy .,eJofm(y)dY)w(O) + O(Ef) 
for O < t < T and O < 8 

where 

f3i(t, e) Xi(t,) + 0(1) for i = 1,..., m,O < t < T, and O <8 e 0 

Consequently, the solutions of (2.1) are highly oscillatory (rapidly decaying) if 

Re{Xi(t, e)} = 0, i = 1, ..., m (Re{Xi(t, e)} < 0, i = 1,... . m). 

We will consider multistep approximations of (2.1) with the form (1.8) using a 
fixed step size k which is bounded but does not resolve the rapidly varying 
components, that is, k and 8 satisfy k < ko and k/? >> 1, where ko is some 
constant. We use properties of stability domains to determine sufficient conditions 
under which all solutions of a multistep approximation of (2.1) decay with time 
when k and 8 satisfy the previously stated conditions. This behavior of the solution 
of the multistep method is consistent with the properties of the solutions of (2.1) 
when the solutions of (2.1) decay. In the case when the solutions of (2.1) contain 
rapidly oscillating components, this restriction assumes that the rapidly oscillating 
components have no interest and should be attenuated. 

In order to state our main result, we need to define the usual notion of a domain 
of absolute stability for a multistep method (1.9), and to introduce two concepts 
which generalize the notions of A-stability and L-stability to subsets of the complex 
plane other than the left half-plane. 

Approximate the test equation (1.1) by a multistep method (1.9) and set z = kX to 
obtain the difference equation 

r 

(2.2) : (a, + b1z)w-' = 0, r < n < oo. 
i=O 

Set fvn = (w, ..., Wn-r+1)T for r - 1 < n < oo and let 2 denote a subset of the 
complex plane. 

Definition 2.1. (a) The domain of absolute stability of (1.9) consists of all points 
z E C such that (a, + b0z)-1 exists, and there exists a constant K(z) so that all 
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solutions of (2.2) satisfy 

jj,Wn11 <? K(z)IIjWJ11 for r - 1 < j < n < oo. 

(b) The multistep method (1.9) is strictly Q-stable if (ao + b0z)-1 exists for all 
z E Q , and for each z E 2 there exist constants K(z) and S(z) with 0 < 8(z) < 1 
so that all solutions of (2.2) satisfy 

IVi"'I < K(z)(l8(z))n-llwIiI for r -1 < j < n < o. 

(c) The multistep method (1.9) is strongly 2-stable if 

(2.3) (a0 + boz) 1 exists and is uniformly bounded for all z E 2, 

and there exist constants K > 0 and 0 < 8 < 1, independent of z, so that all 
solutions of (2.2) satisfy 

II,'InI < K8n-vjIi II for r - 1 < j < n < oo and all z E Q2. 

Algebraic conditions which determine the domain of absolute stability of a 
multistep method, or subsets Q in which a multistep method is either strictly or 
strongly Q-stable, are easily stated. 

The solutions of the difference equation (2.2) are determined by the roots of the 
polynomial R(z, K) = Er=o (ai + biz)Kr-i which we denote by Kj(Z), i = 1,..., r. 

Definition 2.2. The roots of a polynomial q(x) satisfy the root condition if all roots 
of q(x) = 0, denoted by x>, v = 1,... , Q, satisfy lxvi < 1, v = 1, ... , Q, and those 
roots which lie on the unit circle are simple. 

LEMMA 2.1. (a) The domain of absolute stability for method (1.9) consists of all 
points z E C such that (ao + b0z)-1 exists and the roots of R(z, K) satisfy the root 
condition. 

(b) The multistep method (1.9) is strictly Q-stable if (ao + b0z)-1 exists for all 
z E i Q and the roots of R(z, K) satisfy JKj(Z)j < 1, i = 1, . . ., r. 

(c) The multistep method (1.9) is strongly Q -stable if condition (2.3) is satisfied and 
there exists a constant 0 < y < 1, independent of z, so that the roots of R(z, K) satisfy 
IK,(z)I < y for i = 1,. .., r, and all z E Q. 

Example 2.1. Consider the trapezoidal approximation of (1.5) given by 

yf = yfll ?2 (A(tn, 8)yq + A(tn_- 8)yfl9 ) + 2 (F(tn, e) + F(tn-1 8)) 

Set D = {(x + iy) e C: x < O} and D' = {(x + iy) E C: x < O}. Then 
(i) The domain of absolute stability of the trapezoidal rule is the set D. 
(ii) The trapezoidal rule is strictly D'-stable but not strongly D'-stable. 
Identical remarks apply to the implicit midpoint rule 

yn = yn-l + kA(t l/2, 8)(yn + yn-l) + kF(t 172, 8) 

which is the one-leg twin associated with the trapezoidal rule. 
Example 2.2. For each value of p = 1, ... , 6, the backward-difference formula of 

order p ([24, p. 242], or [18, Chapter 11]) is strongly Qp-stable in the region 

(2.4) up = t z E C: -ap + E < r - arg(z) < ap - E and lzi > P }, 
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where p is any positive constant and E is any constant satisfying 0 < E a ap with 
al = 900, a2 = 900, a3 = 880, a4 = 730, a5 = 510, and a6 = 180. 

If we set p = 0 in (2.4), then each backward-difference formula of order p is 
strictly Up-stable but not strongly 2p-stable. 

We are now ready to state the main result of this section. 

THEOREM 2.1. Approximate system (2.1) by a multistep method (1.8) with a step 
size k satisfying 0 < k < k, where k is some constant, and set y n = (yfn,.. , y n-r+?)T. 

Let Q denote a subset of the complex plane. Assume that the multistep method is 
implicit, strongly Q-stable, and there exists a trapezoidal region F' with the form 

(2.5) rF = {(k,g ) E R2: 0 < E< o and a* < k < k}, 

where a * > 0 is some constant such that 

(2.6) (k1E)X, (t 2e for i = 1 .m ,0 <t <T, and (kg Pr. 

Then, if -0 is sufficiently small, there exist constants K > 0, 0 < 8 < 1, and ko < kg 
independent of t, k, and -, such that all solutions of (1.8) satisfy the estimate 

(2.7) IIYI1l < K8n-jIiyjI1 for all r - 1 j < n < N and (k, E) E F, 
where F is the set defined on line (1.12). 

We make several remarks pertaining to the hypotheses in Theorem 2.1 before 
presenting its proof. 

(1) If condition (2.6) is satisfied for all 0 < E< -O, then the set Q must contain the 
point at oo. 

(2) If Q is star-shaped at oo (i.e., z E 2 implies that cz E i Q for all 1 < c < oo), 
and the eigenvalues of D11(t, e) lie in 2, that is, Xi(t, e) E 2 for i = 1,..., m, 
O < t < T, and 0 < E < -O, then there exist constants k, a* and a trapezoidal region 
F' so that condition (2.6) is satisfied. In this case, set a* = 1 and let k be any 
constant satisfying k > -O. 

(3) The condition that ko < k is natural in order to account for the rate of change 
of the eigenvectors of the matrix D11(t, e) which one misses by only examining the 
class of scalar test equations (1.1). 

(4) If the multistep method satisfies the conditions in Theorem 2.1 but is strictly 
Q-stable and not strongly Q-stable, then estimate (2.7) does not hold. Approximate 
the equation y = -(1/-)y by the trapezoidal rule to justify this comment. 

The proof of Theorem 2.1 is a direct application of the following lemma which 
relates the behavior of a multistep approximation of a system of ODE's with 
variable coefficients to the behavior of the multistep approximation for a class of 
scalar test problems (1.1). 

LEMMA 2.2. Let F' denote the set defined on line (2.5). Consider the difference 
equation 

r 

yn = Qj(k, E, To(tn), .. 9, Tr(tn))yn-j 

(2.8) J=1 

forn=r,r+1,..., and (k,E)EF', 

where yn is an m-component vector and each Q1, j = 1,..., r, is an m X m matrix. 
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Assume that the following two conditions are satisfied: 
(1) There exists a constant Q, independent of t, k, and 8, such that 

(2.9) Qj(k, -To(t),.* Tr(t)) E C1(t,Q) forrk < t < oo and (k,E) Er F 

and 

(2.10) Q1j(k, e8 To(t),. ., **Tr(t)) = Q 8(k, e, To(t), 9*., 'To(t)) + kEj, 

where each matrix Ej, j = 1,..., r, is uniformly bounded for all rk < t < oo and all 
(k, FE . 

(2) For each point t* satisfying rk < t < oo there exist constants K > 0 and 
0 < 8 < 1, independent of t*, k, and E, so that the solutions of each "frozen 
coefficient" difference equation 

r 

(2.11) v'1 = 1 Qj(k, 8, T0(t*), ... , To(t)) Vnj n = r, r + 1, 
j=l1 

satisfy the estimate 

(2.12) 11 | <K knjllbjll with Vn = (Vn,Vn- Vn-r1) 

for all r - I < j < n < oo and (k, 8) E F'. Then, if 8o is sufficiently small, there 
exist constants K > 0, 0 < 8 < 1, and ko < k, independent of t, k, and e, such that 
the solutions of (2.8) satisfy an estimate of the form 

(2.13) II"Ill < K8n-jIIyjII with "y = (yn, yn-l l,... yn-(r-1))T 

for all r -1 j < n < oo and (k, E) E F, where F is the set defined on line (1.12). 

The proof of this result is lengthy and appears in Appendix II in the supplements 
section at the end of this issue. 

Proof of Theorem 2.1. The eigenvalues of the matrix (k/8)Dll(T0(t), 8) are distinct 
and are contained in 2 for all 0 < t < T and (k, E) E F', and the multistep method 
is strongly Q-stable, so 

(2.14) (aoI + ( D?0' 
T ) Di(T(t)7 e)) exists and is uniformly bounded for all 

rk < t < T and (k, e) E Fr. 

Consequently, for all (k, E) E F', the multistep approximation of system (2.1) can be 
written as 

r 

(2.15) Y1 = ( Ri(() D(ll(TO(tn)9 e), (e) Dll(Tj(tn)9 7), k,g 
y 

-i, 

n = r, ...,IN, 

where 

Rj(e D11(T0(tn)9 0) ( Dll(Tj(tn)9 8) k, E) 

(2.16) = (aol + ( e~0'a ) Dll(TO(tn)e)) (ajI+( k )DIl(Tj(tl), ))g 

j=1,...,r. 
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Simple calculations (see [28, Section 5] for details) establish that there exists a 
constant R, independent of k, t, and E, such that 

(2.17) Ri( Di )l(TO (t) e) 0 e )DI,(Tj(t)g e)) E= Cl(t , R) 

and 

(21) R/ Di, (To (t), e) 0 e) D1 ( Tj(t ), e) 

Ri((e)Dii(TO(t)0 e), ( Te)Di(o(t)q e)) + 0(k) 

for all rk < t < T and (k, e) E r. 
Let t * be any point in [0, T] and consider the "frozen coefficient" difference 

equation 

(2.19) v1 = E R1((I)D1(t*9 e)()DII(t*,e))vnj, n =r,...N. 

The eigenvalues of (k/E)Dll(t*, e) are distinct and contained in Q for all 
(k, E) E F', and the multistep method is strongly Q-stable, so the solutions of (2.19) 
satisfy an estimate of the form (2.12) for all t* E [0, T]. 

Since 0 < To(t*) < T for rk < t* < T, the solutions of (2.11) satisfy an estimate 
of the form (2.12) for all t* E [rk, T]. 

A direct application of Lemma 2.2 completes the proof of Theorem 2.1. C1 
Remark 2.1. If DII(t, E) E CP(t, E, B) for all 0 < t < oo and 0 < E < eo and 

satisfies the conditions in Assumption 1.2 for all 0 < t < oo and 0 < e < eo, and the 
matrix U(t, e) which diagonalizes DII(t, e) satisfies 

sup {1 U(t, E) 11, |U (t, e) 1} < C, 
O<t< o 
0 < - < Eo 

where C is some constant, then estimate (2.7) holds for all j and n satisfying 
r - 1 < j < n < oo. 

Remark 2.2. A result in the spirit of this section was derived by Odeh and Liniger 
in Section III of [35]. They considered one-leg approximations of nonlinear systems 
of ODE's which satisfy a monotonicity condition. They showed that if the one-leg 
method is AO.-stable (Odeh and Liniger [34]), then errors produced by initial data 
perturbations for the one-leg method decay exponentially with time. Analogous 
results were obtained for linear multistep methods by using the nonlinear transfor- 
mation which relates the solution of a one-leg method to its corresponding linear 
multistep method. 

The results of Liniger and Odeh cannot be used to obtain the result in this section 
because we consider systems (2.1) which do not necessarily satisfy the stated 
monotonicity condition, and we consider a class of multistep approximations of 
systems (2.1) which is larger than the union of the one-leg and linear multistep 
methods. Even if we restrict our discussion to systems (2.1) which satisfy the stated 
monotonicity condition for each fixed 0 < E < E, and to the classes of one-leg and 
linear multistep methods, the results of Liniger and Odeh are still inapplicable in this 
section. The transformation which connects the solution of a linear multistep 



MULTISTEP DISCRETIZATIONS OF STIFF ODE'S 483 

approximation of (2.1) to the corresponding one-leg approximation of (2.1) is 
unbounded as E 0 (van Veldhuizen [42]). 

3. Property 1.1. In this section, we apply the concept of stability domains together 
with the usual Dahlquist-Henrici stability theory to determine sufficient conditions 
under which a multistep approximation of (1.5) with the form (1.9) satisfies Property 
1.1. 

Remark 3.1. Throughout Section 3, F will denote the,trapezoidal region defined 
on line (1.12); we will assume that all constants are independent of the parameters k, 
t, and E unless explicitly stated otherwise, and whenever w&'refer to systems (1.4) or 
(1.5), we will always assume that these systems satisfy the conditions in Assumptions 
1.1-1.3. 

We begin by introducing various stability concepts for multistep approximations 
of systems of ODE's which depend on a parameter. These definitions were previ- 
ously stated and motivated in Section 3 of [28]. 

Consider the multistep method (1.9) and set i, = (v, . .., v,-r1)", where v' is 
the solution of the corresponding homogeneous multistep method (1.8). The first 
definition corresponds to the usual meaning of stability in the sense of Dahlquist- 
Henrici. 

Definition 3.1. (a) The multistep method (1.9) is stable if for each fixed value of E 
satisfying 0 < - < EO there exist constants a(X(), K(E), and T(E) so that all solutions 
of the corresponding homogeneous multistep method (1.8) satisfy an estimate of the 
form 

(3.1) linii <? K(e)e ( 5)f Ji3 for all r - 1 < j < n < N, 

when 0 < k< T(E). 
(b) The multistep method (1.9) is uniformly stable if it is stable with constants 

K(E), a(XE), and T(E) which are independent of E for 0 < E < -O. 
Remark 3.2. If the matrix A(t, e) is continuous for all 0 < t < T and 0 < E E 

then method (1.9) is stable provided that the roots of the characteristic polynomial 
p(X) = Ej !0ajXr1 satisfy the root condition. Furthermore, if A(t, E) is continuous 
for all 0 < t < T and 0 < E< O, then this same algebraic condition implies that 
(1.9) is uniformly stable. 

The next definition introduces stability concepts which are appropriate for multi- 
step approximations of stiff systems of ODE's which depend on a parameter when 
the step size resolves only the slow time scales in the system of ODE's and not the 
fast time scales. 

Definition 3.2. (a) The multistep method (1.9) is uniformly (k, -)-bounded in F if 

(3.2) (aoI + b0kA(r0(t), E)) exists and is uniformly bounded for all 
rk < t < Tand (k,E) e F, 

and there exists a constant K so that all solutions of the corresponding homoge- 
neous multistep method (1.8) satisfy an estimate of the form 

(3.3) livnll < KlJn-1 11 for all r < n < N and (k, E) E F. 

(b) The multistep method (1.9) is uniformly (k, -)-stable in F if condition (3.2) is 
satisfied and there exist constants K and a so that all solutions of the corresponding 
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homogeneous multistep method (1.8) satisfy an estimate of the form 

(3.4) I I b"l < Keat-IIDJ II for all r -1 <j < n < N and (k, E) E F. 

(c) The multistep method (1.9) is strongly (k, -)-stable in F if condition (3.2) is 
satisfied and there exist constants K and 0 < 8 < 1 so that all solutions of the 
corresponding homogeneous multistep method (1.8) satisfy an estimate of the form 

(3.5) llInll < K8nI-jIIJII for all r - 1 < j < n < N and (k, E) E F. 
The following lemma states an obvious relationship among the concepts defined in 

Definition 3.2. 

LEMMA 3.1. (a) If (1.9) is strongly (k, e)-stable in F, then (1.9) is uniformly 
(k, e)-stable in F. 

(b) If (1.9) is uniformly (k, e)-stable in F, then (1.9) is uniformly (k, e)-bounded in 
F. 

Remark 3.3. (1) The homogeneous multistep method (1.8) satisfies Property 1.1 if 
and only if there exists a trapezoidal region F with the form (1.12) such that (1.8) is 
uniformly (k, 8)-stable in F. 

(2) In Theorem 2.1 we used the geometry and properties of stability domains to 
determine sufficient conditions under which there exists a trapezoidal region with 
the form (1.12) such that a multistep approximation of system (2.1) is strongly 
(k, -)-stable in F. 

In order to precisely state the main results which appear in Theorems 3.1, 3.2, and 
Corollary 3.1, we find it convenient to separate implicit homogeneous multistep 
methods (1.8) into three different classes. 

Class X: b,=0, i= 1,...,r. 
Class Y:T,(t) = T(t)for i = 1...Ir, and 0< t <T. 
Class Z: The integers i = 1, .. ., r, can be partitioned into two sets I, and I2 such 

that 

(3.6) i EI1 if b, = 0 or Ti(t) = to(t) for all t e [O, T], 

and 

(3.7) i E I2 if bi 0 and Ti(t) T t(t) for all t E [O, T]. 

It is easy to check that Class X consists of the backward-difference methods, Class 
Y consists of the one-leg methods, and Class Z consists of multistep methods which 
are neither backward-difference methods nor one-leg methods. 

Let T(t, 8) denote the matrix which appears on line (1.6). For i = 1,..., r, let 
E11(k, t, e), Ei2(k, t, ) E1(k, t,), E)2(k, t, E) E CP'-(t, 8, B) denote matrices 
with dimensions m X m, m X (n - m), (n - m) X m, and (n - m) X (n - m), 
respectively. 

THEOREM 3.1. (Property 1.1 for homogeneous multistep methods (1.8).) Approxi- 
mate system (1.4) by a multistep method (1.8). Assume that the multistep method is 
implicit, stable (i.e., its characteristic polynomial satisfies the root condition), the 
step size k resolves the slow time scales in (1.4), that is, k < ko, where ko is any 
constant satisfying 

(3.8) k1b- IID22(t, 1 )II < 1 for 0 t < Tand 0 E n 
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and the step size does not resolve the fast time scales in (1.4) but the fast time scales are 
attenuated, that is, 

method (1.8) is a strongly (k, e)-stable approximation of the 
(3.9) equation edw/dt = D1 (t, E)w in F, where a* is some constant 

and ko is defined by (3.8). 

If (1.8) lies in Class X or Y, then (1.8) is uniformly (k, e)-stable in F. 
If (1.8) lies in Class Z and the set I2 is empty, then (1.8) is uniformly (k, e)-stable 

in F. 
If (1.8) lies in Class Z, the set I2 is not empty and for each i E I2 the matrix T(t, E) 

satisfies the coupling condition 

(3.10) T1(T0(t), c)T(Tr(t), E) = I + k| E1(k t, ) E12(k, t, e) 

and 

(3.11) E11(k, t, E) = 0(E) 

for all rk < t < Tand 0 < E < E0, then (1.8) is uniformly (k, ?)-stable in F. 
If (1.8) lies in Class Z, and there exists an integer i E I2 so that condition (3.10) is 

satisfied but condition (3.11) is violated, then( 1.8) need not be uniformly (k, e)-stable 
in F for any choice of the constants a * and k0. 

The central idea behind the proof of Theorem 3.1 is to separate the scales of the 
multistep approximation of (1.4). We show that after an appropriate bounded 
change of variables, a given multistep approximation of (1.4) can be transformed 
into the same multistep approximation of the system dy/dt = D(t, E)y plus a 
perturbation. (D(t, E) is the block diagonal matrix which appears in Assumption 
1.1.) If the hypotheses in the first paragraph of Theorem 3.1 are satisfied, then we 
can uniformly bound the multistep approximation of dy/dt = D(t, E)y for all 
(k, E) E F. We use stability to bound the solution of the multistep approximation of 
the system dy11/dt = D22(t, -)y1l, and we apply assumption (3.9) to bound the 
solution of the multistep approximation of the system -dyl/dt = D11(t, -)yl. Fur- 
thermore, in the first four cases stated in Theorem 3.1, we can uniformly bound the 
perturbation and apply the following variant of a theorem due to Strang [39] to 
estimate the solution of the difference method: 

LEMMA 3.2. Consider the difference approximations 
r 

(3.12) yn = i Qj(T0(tn) ...Tr(tn) k, c)yfl] n = r, .. ,N, 
,'=1 

and 
r 

(3.13) W'~ = E Qj(TO(tn), ... * Tr(tn), k, c)w 9', n = r, ..., N, 
J=1 

where Q., Q,, j = 1,..., r, are n X n matrices. If the difference approximation (3.12) 
is uniformly (k, e)-stable in F, and 

(3.14) Qj =Qj + 0(k) for all (k, ) E and tr, tn < T, 

then the difference approximation (3.13) is also uniformly (k, \)-stabI in F. 
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Proof of Theorem 3.1. The matrix (a0I + bokA(T0(t), 8))<l exists and is uniformly 
bounded for all rk < t < T and (k, E) E F, so (1.8) can be written in the form 

r 

(3.15) Vt' = R1(A(To (tn) t )A A(r1(tjn), E), k, E)Vn-, n = r, .. ., N, 
j=l 

where 

Rj = (aoI + kbOA(O(tn) )), (ajI + kbAA(Tj(tn)) j 

A simple application of identity (1.6) shows that 

RJ(A(To(t), E), A(Tj(t), E), k, E) 

- T(TO(t), 13)X1T- (T0(t), -)T(Tj(t), E)A2T-'(Tj(t), E) 

where 

= ((?aoi + ( ? )Dii(Tm(t) (a) 0 ) 

? (aOI + bOkD22(TO(t) E) 

and 

A2= 
I 

'+( )DI(Tj(t),) ? 

0 (aiI + bjkD22(T1(t), E 

Make the change of variables Vn = T(T0(tn), E)W' in (3.15) to obtain the dif- 
ference equation 

r 

(3.16) wn = , Rj(k,tn, W ni 
j=1 

where 

R, (k, t,) 

(3.17) = T-1(To(t), e)Rj(A(To (t), -), A(T(t), E), k, E)T(To(t -jk), E), 
j-1,...,r. 

Let D(t, E) be the matrix defined on line (1.6), and set 

(31)Rj(D(TO(t), E), D(Tj(t), e) k, e) 

= (aOI + bokD(To(t), -))'(ajI + kbjD(T(t), E)), j = 1,..., r. 

If method (1.8) lies in Class X, then 

Rj (A(To -), E A (Tj(t), -) k,E 

= (aoI + bokA(T0(t), E))'(a1), j = 1,...,r, 

and 

(3.19) k1(k, t, ?) = RR(D(TO(t), e), D(Tj(t), e), k, e) + 0(k) 

for]= 1,...,r, rk te Tand (k,i ) e r. 
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If method (1.8) lies in Class Y, then 

RJA(TQ0(t), 8), A(j(t), 8), k, 8) 

= T(To(t),E)( 0 T- (0(t), 8), r= ,...,r, 
0 A22 

where 

A1(t, 8 (aoI + ( b )Dil(T (t)r a)) (aI + (k )Dj(j(t) 

and 

A22(t, ) = (aO1+ b0kD22(T0(t), -))'(a1I + bjkD22(Tj(t),8)), j=1,..., 

Consequently, Rj(k, t, e) satisfies (3.19). 
If method (1.8) lies in Class Z and the set 12 is empty, then Rj(k, t, e) satisfies 

(3.19). 
If method (1.8) lies in Class Z and j E I,, then Rj(k, t, e) satisfies (3.19) for all 

j E I, and (k, 8) E r. If j E I2 and condition (3.10) is satisfied, then 

RJ(A(To(t), 8), A(Tj(t), 8), k, 8) = y' + -y + y3', 

where 

AJ 0 \T~ 
= T(T0(t), O) A, T 8), 

y2E = kThkt,) l1l0 E)2(k 8) |2T-( ;(t), 8), 

and 

=3kT(Tr(t), E)(i o) T1(Tj(t), ) 

with 

21= (a0 + kbD22(TO(t), e)) E?1(k, t, e)(a11 + (2 ?)D11(Tj(t), 8)). 

Y/i and -y2 are uniformly bounded for all (k, 8) E F. y' is uniformly bounded if 
condition (3.11) is satisfied. Consequently, Rj(k, t, 8) satisfies (3.19) when (1.8) lies 
in Class Z and the coupling condition (3.10), (3.11) is satisfied for all i E I2. 

By Remark 3.2, method (1.8) is a uniformly stable approximation of the equation 
dy/dt = D22(t, 8)y for all 0 < t < T and (k, 8) E F. This fact and assumption (3.9) 
together imply that the difference equation 

r 

(3.20) X"' = E R(D(To(t), 8), D(Tj(t), 8), k, 8)Xn-j n = r, ..., N, 
J=1 

is uniformly (k, e)-stable in F. 
Identity (3.19) holds for the first four cases in this theorem, so we can conclude 

that the difference equation (3.16) is uniformly (k, 8)-stable in F by Lemma 3.2. 



488 GEORGE MAJDA 

The matrices T(Tr0(t), e) and T -1( O(t), E) are uniformly bounded, so we can 
conclude that (3.15) is uniformly (k, e)-stable in F and the proof of Theorem 3.1 in 
the first four cases is complete. We establish the last statement in Theorem 3.1 by 
constructing an explicit example. This example is presented in Section 5. El 

THEOREM 3.2. (Property 1.1 for inhomogeneous multistep methods (1.9).) Ap- 
proximate system (1.5) by a multistep method (1.9) and set Un = (yfn,III yn-r+l)T. 

Assume that method (1.9) is implicit, stable, the step size k satisfies 0 < k < ko where 
ko is defined on line (3.8), and (1.9) satisfies assumption (3.9). 

If the corresponding homogeneous difference method (1.8) lies in Class X or Y and 
Y('To(t),..., Tr(t), k, e) = F(T0(t), e), then there exist constants Kand a such that 

(3.21) IIunII < Ke?tnJ-, (iIu]Ii + tn_jf) for all r - 1 < j < n < N 

and (k,c) E F, 
where 

f= sup |(f1(t, ), f11(t, )) T| 
0< t< T 

That is, method (1.9) satisfies Property 1.1. 
If the corresponding homogeneous difference method (1.8) lies in Class Z, the set I2 

is empty and Y(To(t),..., Tr(t), k, )-F(T0(t), E), then all solutions of (1.9) satisfy 
an estimate of the form (3.21). 

If the corresponding homogeneous difference method (1.8) lies in Class Z, the set I2 
is not empty, conditions (3.10) and (3.11) are satisfied for each i E I2 and 

'F(TOW I I . , Tr(t), k, e) is a linear combination of F(Qi(t), e) with i E I2, then all 
solutions of (1.9) satisfy an estimate of the form (3.21). 

Assume that the corresponding homogeneous difference method (1.8) lies in Class X, 
Y, or Z, conditions (3.10) and (3.11) are satisfied for each i E I2 if (1.8) belongs to 
Class Z, and that r(T0(t),..., Tr(t), k, -) is a linear combination of F(Tr(t), -), 
i = 0, .. ., r. If conditions (3.10) and (3.11) are also satisfied for all i E I,, then all 
solutions of (1.9) satisfy an estimate of the form (3.21). If condition (3.10) is also 
satisfied for all i E I,, but condition (3.11) is violated for some value of i E I,, then the 
solutions of (1.9) need not satisfy an estimate of the form (3.21). Consequently, the 
inhomogeneous multistep method (1.9) need not satisfy Property 1.1 in this last case. 

The proof of Theorem 3.2 depends on the discrete version of Duhamel's Principle 
and the following well-known lemma: 

LEMMA 3.3. For any values of k and E such that 

(aoI + kboA(To(t), e))1 exists for 0 < t < T, 

the multistep method (1.9) can be written as 
r 

yn = E Rj(A(T0(tn) E), A(Tj(tn), ),k, y)y i 

(3.22) = 

+kJS(TO(tJ9),. Tr(tn)g kg E) n =r, . . .,9 N, 

where 

(3.23) R_ = (a0I + kb0A(T0(tn), E))1(a1I + kb1A(Tr(t-), )), j = 1 ... r, 
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and 

(3.24) j= (aoI + kb0A(T0r(t, ) T))0X((tA)- .T(tp)1 
k, ) 

Furthermore, (3.22) can be written as the equivalent one-step method 

(3.25) un = a(k, tn a )un- + kG(k, tni ,), n = r, ... , N, 

where 

R I( A (To(ts1,), A lt,1.) k, e) ... R, r A (To(t1, A (Tr (t)1)0? k, 0) 
I 0... ~ 0 

(3.26) a= 0o o 

0 0 I 0 

I denotes the n x n identity matrix, and 

(3.27) Tn 
= (yn, ynr?l)T 

G(k, tn,E) = (T0(tn) ...,Tr(tn), k, ),0, ... ,0) 

Proof of Theorem 3.2. We first note that in all cases listed in this theorem, method 
(1.9) is uniformly (k, e)-stable in F by Theorem 3.1. 

Method (1.9) can be written as the equivalent one-step method (3.25)-(3.27). For 
any integers n and j satisfying r - 1 < j < n < N, the discrete version of Duhamel's 
Principle implies that the solution of this one-step method is given by 

n 

(3.28) un = S(n, j)u' + k E S(n, i)G(k, ti, C) 
i=j+1 

where 
n 

(n, } A 
H a(k, ti,) if n >,j+ 1 

S(n, J)-< i=j+f 

t I if n = j. 

Estimate (3.28) with the triangle inequality to obtain 
n 

(3.29) lUlnil < JIS(n, j)11 llujll + k E IIS(n, i)ll JIG(k, ti, E)I. 
i=j+l 

In all cases listed in this theorem, (1.9) is uniformly (k, e)-stable in F, so there 
exist constants C1 and a so that 

(3.30) llS(n,i)llI Cle tn-J for all r -1 < jn < Nand(k,) e F. 

Consequently, the solution of (1.9) will satisfy an estimate of the form (3.21) if there 
exists a constant C2 such that 

(3.31) llG(k, t, E)ll < C2f for all 0 < t < T and (k, e) E F. 

By identities (3.24) and (3.27), inequality (3.31) holds if 

(3.32) || =|(aOI + bokA (To(t) ,) (Tro(t), ,Tr(t), k, e) || < C2f. 

Set 

ml = (aoI +(b0k/E)D11(o(t), ))1 and M2 = (aoI + b0kD22(T0(t), e)) 
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If (1.9) satisfies the conditions in any of the first three cases listed in this theorem, 
then 

= (aoI + bokA(To(t), e))'F(T(t), ) 

- T(To(t), m)( 0 
M)T1(T(t), )F(To(t), e) 

( 0 M2 )( fll (To( t ), e) 

The matrices (M1/e), M2, and T(T0(t), e) are all uniformly bounded, so we can 
conclude that Y satisfies an estimate of the form (3.32). 

If (1.9) satisfies the conditions in the remaining cases listed in the theorem, then 

.F= (a01 + b0kA('r(t), ) (Ea1F('r(t), ) 

r 

- E asI(a0 + bokA('A0(tt), e))_ F( Tj (t), e), 
i=O 

where ai, i = 0, . . ., r, are constants. For each value of i, 

(aoI + b0kA(T0(t), e))'F(Tr(t), e) 

= T(Tor(t), e)(ol M T-)(T(o(t) e)T(Tj(t), e)T-'(Tj(t), e)F(T'r(t), e) 

((Mi/e-)(I +kEil) kM1E2 ir()e 

- T(To0( t), e)1 kM( E'k/M) M2(I + kEi2) 12 fll((Ti(), e) ). 
All matrices which appear on the previous line are uniformly bounded if condition 
(3.11) is satisfied. If condition (3.11) is violated, then kM2(E01/e)= O(k/e) in 
general, and the proof of Theorem 3.2 is complete. O 

Remark 3.4. (1) In [30] we construct an explicit example of a multistep method 
which satisfies all conditions in the last statement of Theorem 3.2 and does not 
satisfy Property 1.1 for a particular system of ODE's satisfying Assumptions 
1.1-1.3. Consequently, the results of Theorem 3.2 are sharp. 

(2) Strictly speaking, an r-step multistep approximation of system (1.5) satisfies 
Property 1.1 if: 

(i) The solutions of the multistep method satisfy an estimate of the form (3.21). 
(ii) The (r - 1) additional values of the r-step method, y', ... ., yr-I, are com- 

puted by a one-step method whose solutions satisfy an estimate of the form (3.21) 
forO < j < n < r- 1(with u i replacedby yj). 

Consequently, the additional initial values of a multistep method must be ap- 
propriately computed in order for a multistep method to satisfy Property 1.1. This 
point is discussed on pp. 39-40 in [30]. 

In order to compare the properties of one-leg and the classical linear multistep 
methods, we restate Theorems 3.1 and 3.2 in terms of these methods. 

COROLLARY 3.1. Approximate system (1.5) by a multistep method (1.9). Assume 
that method (1.9) is implicit, stable, and step size k satisfies k < ko, where ko is 
defined on line (3.8), and (1.9) satisfies assumption (3.9). 
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If the multistep method is a one-leg method or a backward-difference method, then it 
is uniformly (k, e)-stable in F and all solutions of the inhomogeneous one-leg or 
backward-difference method satisfy an estimate of the form (3.21). 

If the multistep method is a linear multistep method which is not a backward-dif- 
ference method and the matrix T(t, E) which appears on line (1.6) satisfies the coupling 
condition 

XEll(k, t, e)El2k ,e (3.33) T-l(t, e)T(t - k,g) I + k ( 1~(,t ) E2(k, t, c 

and 

(3.34) E2 = 0(E) 

for all 0 < t < T and 0 < E - E0 where E, i, j = 1, 2, are characterized in Theorem 
3.1, then the multistep method is uniformly (k, e)-stable in r. Furthermore, all 
solutions of the inhomogeneous linear multistep method satisfy an estimate of the form 
(3.21). 

If the multistep method is a linear multistep method which is not a backward-dif- 
ference method and condition (3.33) is satisfied but condition (3.34) is violated, then 
the linear multistep method need not be uniformly (k, e)-stable in F for any choice of 
the constants a* and ko. 

We now discuss the coupling condition (3.33), (3.34) before making some remarks 
about the practical implications of Corollary 3.1. 

Assume that the matrix T(t, E) which appears on line (1.6) satisfies T(t, e) E 

C2(t, e, B). Make the change of variables y = T(t, E)w in system (1.5) to obtain the 
equation 

(335) ~dw _ (t -)dT(t, e)t,-F(t (3.35) dt - D(t,e) - Tw1(t,e) + T-1(t,e)F(t,e), dt 
~~~~~~~dt 

where the matrix D(t, E) is defined on line (1.6). Identity (3.35) shows that the 
matrix -(T-1(t, e)dT(t, c)/dt) controls the coupling between the fast and slow time 
scales in system (1.5). 

Now consider the expression on line (3.33). By Taylor's Theorem 

T(t - k, E) = T(t,) - k dT(t, ) + 0(k2) 
(3.36) dt 

for O < t < T andO d E < 0 

Substitute (3.36) into (3.33) and let k -O 0 to obtain 

(3.37) -T1l(t,) dT(,e I (E1otc ~:2 ) 
dt El E2(0, t, e l E2(0, t, e 

If condition (3.34) is also satisfied, then 

(3.38) T-l(t, e)dT(t) / ( t 
+ 

Identity (3.38) shows that conditions (3.33) and (3.34) impose a restriction on the 
strength of the coupling from the fast to the slow time scales of system (1.5). In 
particular, conditions (3.33) and (3.34) are satisfied if the coupling from the fast time 
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scales of (1.5) to the slow time scales of (1.5) is sufficiently weak. For this reason, 
conditions (3.33) and (3.34) are called the coupling condition in this paper and in 
[28]. A detailed discussion of the coupling condition can be found in van Veldhuizen 
[42]. 

Condition (3.38) clearly places a restriction on the structure of system (1.4) and 
the matrix T(t, e) in particular. If (3.38) is satisfied, then standard results from the 
theory of ODE's imply that 

9) T(t, e) = T(O, e)( 11(t, e) M2(t, ) + o(E) 

forO < t < TandO ?< E< Eo 

where M1l is an m X m matrix, M12 is an m x (n - m) matrix, and M22 is an 
(n - m) x (n - m) matrix. We obtain the following result: 

LEMMA 3.4. If 

(1) the matrix A(t, E) in (1.4) is constant, or 
(2) system (1.4) appears in singular perturbation form and has no turning points, 

that is, 

A11(t,E) A12(t,c) 

A(t, E) = E E , 
A21(t,c) A22(t, E 

where A11(t, E) E CP(t, E, B) for i, j = 1, 2, and A11(t, E) is invertible with Ajj(t, E) E 
CP(t, E, B), then condition (3.39) is always satisfied. 

The proof of part (1) of Lemma 3.4 is obvious and a proof of part (2) can be 
found in Section 2 of [29]. [1 

It is well known that a one-leg method and its corresponding linear multistep 
method have identical properties when they approximate systems of ODE's with 
constant coefficients. Furthermore, there is an invertible transformation which 
transforms the solution of a linear multistep method into its corresponding one-leg 
twin (see Dahlquist [8]). Despite these facts, Dahlquist and Lindberg [11], Dahlquist 
[10], Nevanlinna and Liniger [33] and van Veldhuizen [42] have demonstrated that in 
various ways the behavior of a linear multistep method and its corresponding 
one-leg method can be very different when they approximate variable coefficient 
(and nonlinear) stiff problems. We make the following additional observations about 
these two classes of methods on the basis of Corollary 3.1: 

1. The uniform (k, -)-stability (stability with large step sizes) of linear multistep 
approximations of stiff linear systems depends on the form in which system (1.5) 
appears. This comment is not true for one-leg methods. Consider the cases when the 
matrix A(t, E) in (1.5) is constant or system (1.5) appears in singular perturbation 
form without turning points, that is, system (1.5) has the form 

E d = A11(t, E)y1 + A12(t, E)yII + fM(t, E) 

dy=( 

dt= A21(t, c)y1 + A22(t, c)YII + fII(t, c), 
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where the matrices A1j(t, E), i = 1, 2, j = 1, 2, are characterized in Lemma 3.4 and 
f1(t, E), f1l(t, E) E CP(t, E, B). In these two cases, the uniform (k, -)-stability of both 
a one-leg approximation of system (1.5) and its corresponding linear multistep 
approximation are determined by the usual Dahlquist-Henrici stability theory to 
control the the slow time scales of (1.5), and by the use of stability domains to 
control the fast time scales. If system (1.5) satisfies the conditions in Assumptions 
1.1-1.3 but is otherwise unrestricted, then the two previously mentioned properties 
determine the uniform (k, -)-stability of a one-leg approximation of (1.5). The 
uniform (k, -)-stability of a linear multistep approximation of system (1.5) depends 
on an additional condition, namely, the coupling condition (3.33), (3.34). This 
condition only arises when the coefficients in system (1.5) vary with time. 

We note that if we make the change of variables y(t) = T(t, E)w in (1.5), then the 
resulting equation for w appears in singular perturbation form. According to 
Corollary 3.1, the uniform (k, -)-stability properties of a linear multistep approxima- 
tion of the scaled system which w satisfies are better than the uniform (k, -)-stability 
properties of the linear multistep approximation of the original system (1.5). 

2. If we consider problems which exhibit a strong coupling from the fast time 
scales to the slow time scales, then a one-leg method using a given step size k can 
compute an accurate solution of the equation, while the solution of its corresponding 
linear multistep method using the same step size will produce a solution which is not 
accurate at all. In other words, the linear multistep method requires a smaller step 
size to obtain the same accuracy as the corresponding one-leg method. This point is 
illustrated with an example in Section 5. 

Remark 2 is consistent with observations made in [14] and [15], which demon- 
strate that the integration package TRAPEX (based on the trapezoidal rule with 
extrapolation) has difficulties solving nonlinear systems of ODE's when there is a 
strong coupling between the slow and fast time scales. According to Corollary 3.1, 
these numerical difficulties could be avoided if the trapezoidal rule is replaced by the 
implicit midpoint rule. This change was made by Lindberg [26], [27] in the integra- 
tion package IMPEX. 

3. Corollary 3.1 demonstrates that one-leg methods have better stability properties 
with large step sizes, in general, than their linear multistep counterparts. Conse- 
quently, one-leg methods are to be preferred over their linear multistep counterparts 
when choosing a discretization for a system of stiff ODE's. 

4. The Relationship Between Property 1.1 and D-Stability. In this section we relate 
the theory developed in Section 3 to the concept of D-stability introduced by van 
Veldhuizen in [42]. In [42] van Veldhuizen stated that D-stability complements the 
usual notions of stability and stability domains, and that D-stability has no relation 
to the propagation of errors for solutions of difference methods. An important 
consequence of the results in this section is that we relate the concept of D-stability 
to the usual notions of stability and stability domains, and to the propagation of 
errors for multistep methods which use large step sizes. 

Following van Veldhuizen [42], consider the homogeneous model problem 

(4.1) dy/dt =A(t)y, t > to0 
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where A(t) is a matrix. Approximate system (4.1) by a discretization method which 
can be written in the form 

(4.2) Yi, 1 = G (ti, k)yi 

where k is the step size, ti = to + ik, and G(ti, k) is a matrix. If the discretization is 
a one-step method, then yi is an approximation to y(t1). If the discretization is a 
multistep method, then the recursion (4.2) describes the canonical one-step recursion 
corresponding to the multistep method. 

Let T, ko, and X denote given constants. 
Definition 4.1 (van Veldhuizen). The discretization of (4.1) resulting in the 

recursion (4.2) is called D(Y)-stable if for all stiff systems in the Class Y, for all 
t E [to, to + T] and all k E (0, ko] 

JIG(t, k)JI < M < xo, 

where M is a constant depending only on ko and the Class Y. 
Van Veldhuizen makes the following choice for the Class Y: 
Definition 4.2 (Class Y). The Class Y of stiff systems consists of all linear 

systems (4.1) parametrized by a parameter E E (0, 6O] which satisfy the following 
conditions: 

(SI) y(t) E C2, 

(S2) A(t) = T(t)AT-1(t) for all t E [to, to + T]. Here A(t) is a diagonal matrix 
given by 

A 
Ot 

0 
A(t)= 

(Xt)/0 ,L(t)) 

where Re(X(t)) < X < 0 for all t E [to, to + T]. 
(S3) X, ,u, T, T-1 depend smoothly on t and possibly - E (0, EOj, and the 

derivatives from order zero up to a certain order (sufficiently high) are bounded 
uniformly in t and 6 E (0, 6O]. 

Discretizations of systems (4.1) fall into two categories. Either all time scales in 
(4.1) are resolved by the step size or some time scales in (4.1) are not resolved by the 
step size. (For systems which lie in Class Y, all scales are resolved if k/E -+ 0 as 
k - 0. The fast time scales are not resolved if k/e > a * with a * a constant as 
k 0.) If all scales in (4.1) are resolved by the step size, then the usual Dahlquist- 
Henrici stability theory controls the error propagation properties of the multistep 
discretization. A meaningful stability concept for a multistep discretization of stiff 
equations which complements the Dahlquist-Henrici theory should apply to the case 
where some time scales in (4.1) are not resolved by the step size. Consequently, we 
alter van Veldhuizen's Definition 4.1 for systems (4.1) which depend on a parameter 
0 < 6 < Eo to reflect the complementary case when all scales in (4.1) are not resolved 
by the step size. 

Let F denote the trapezoidal region defined on line (1.12). 
Definition 4.1a. Consider systems (1.4). The discretization of (1.4) resulting in the 

recursion 

(4.2a) v.= G(t_ k, v)v 
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is called D(Y)-stable if for all stiff systems in the Class Y, for all t E [to, to + T] 
and(k,c) F, 

JIG (t, k, -) 1 < M < xo 

where M is a constant depending only on ko, a*, and the Class Y. 
We also replace the Class Y defined in Definition 4.2 by the Class C which 

consists of all systems (1.4) (or a subset of systems (1.4)) which satisfy the conditions 
in Assumptions 1.1 and 1.2. 

We are now prepared to state two results which connect our version of van 
Veldhuizen's Definition 4.1 to the results in Section 3 and to the propagation of 
errors for multistep methods which use large step sizes. 

THEOREM 4.1. Approximate a system in Class C by a multistep method (1.8). The 
multistep method is D(C)-stable if and only if for all stiff systems in C, the multistep 
method is uniformly (k, e)-bounded in F with a bound which only depends on the class 
C. 

THEOREM 4.2. If the hypotheses in Theorem 3.1 hold uniformly for all systems in 
Class C, then the multistep method is D(C)-stable. Furthermore, for all systems in C 
the multistep method is uniformly (k, e)-stable in I' with constants K and a (which 
appear on line (3.4)) depending only on the Class C. 

We have applied Part (b) of Lemma 3.1 to justify the first statement in Theorem 
4.2. 

5. Numerical Examples and the Practical Implications of Property 1.1. In this 
section, we introduce a model variable coefficient system of ODE's which satisfies 
the conditions in Assumptions 1.1-1.3. We approximate this model equation by a 
particular one-leg method and its corresponding linear multistep method. Our goal is 
to illustrate the practical consequences of Corollary 3.1 which are stated at the end 
of Section 3, and to make a general comparison between the classes of one-leg and 
linear multistep methods. 

Consider the model system 

(5.1) dv/dt = {U*(t)DU(t)}v, 0 < t < oo, 0 <6< .1, v(0) = (1.0,1.0)T, 

where 

(5.2) U(t) -(Cos(t) sin(t) D 
1, 0 

-sin(t) cos(t) J D -1 

and U *(t) denotes the transpose of U(t). 
System (5.1) satisfies the conditions in Assumptions 1.1 and 1.2 with the matrices 

T(t, E) and D(t, E) which appear in Assumption 1.1 given by 

(5.3) T(t,E) = U*(t) and D(t,E) =D. 

The matrix U(t) defined on line (5.2) is unitary, so 

T1(t, e)T(t - k,E) = U(t)U*(t - k) = -cos(k) sin(k)) 
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Consequently, system (5.1) does not satisfy the coupling condition (3.33), (3.34). 
System (5.1) can be transformed into a system of ODE's with constant coeffi- 

cients. Make the change of variables v = U*(t)w in (5.1) to obtain 

(5.4) 
dw (-1/ -1w w(O) 

= 
v(O). 

dt- 1 -1 

Equation (5.4) is easily solved to produce the general solution of (5.1) which is given 
by 

v(t) = U*(t)M(t 0e A, M)1v(O), 

where 

1 + J -E 

1 + + J and J = V1I2E-3E2. 

A simple calculation shows that 

X_= -1/E + 0(1) and X+= -1 + O() asE 0. 

We conclude that the solutions of (5.1) behave like the solutions of the constant 
coefficient system dv/dt = Dv. Furthermore, any solution of (5.1) can be written as 
the sum of a slowly varying solution of (5.1), denoted by vs(t), and a rapidly varying 
solution of (5.1), denoted by vR(t), namely, 

v(t) = Vs(t) + vR(t), 

where 

vs(t) = U*(t)M( ex+t)M'l)(O) 

and 

vR(t) = U*(t)M( eO 0)M -1v(o). 

Consider the one-leg approximation of (5.1) given by 

(I -kU*(3t,+, + lt,)DU(4t,+1 + 
4tn))Xn+ 

(5.5) (4-++*t)x? 
= (i + +~ + it ))Xn, x 0 =v() ( * ) = ~(I + kU*(4tn+l 4 4n)DU(4tn+l + 4tn)) () 

The corresponding one-step approximation of (5.1) is given by 

(5I .6 UN*(tn?+)DU(tn+l)) yn+1 

(5.6) 
4 

(I + - 
U*(tn)DU(tn))yn y = v(O). 

Let F denote the trapezoidal region 

(5.7) F={(k, E R2: < .1 and *a < k < k0}, 
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where a* is any positive constant and ko is any constant satisfying ko < 4/3. Both 
the one-leg method (5.5) and its corresponding one-step method (5.6) are implicit, 
stable, and strongly (k, e)-stable approximations of cj = -y in F. Corollary 3.1 
implies that (5.5) is uniformly (k, -)-stable in F. 

We now show that method (5.6) is not a uniformly (k, e)-stable approximation of 
system (5.1) inF for any choice of the constant a*. Since method (5.6) satisfies all 
hypotheses in the first paragraph of Corollary 3.1, but system (5.1) does not satisfy 
the coupling condition (3.33), (3.34), we conclude that the results in Corollary 3.1 
(and Theorem 3.1) are sharp. 

The matrix 

I- 
3k 

U*(t)DU(t)) 

is invertible for all t > 0 and (k, E) E F, so method (5.6) can be written as 

yf? I 3kU*(tn+,)DU(tn+l)) (I + - U*(tn)DU(tn))yn 

(5.8) = (u*(t,,+?)(I - -D U(tn+1)U*(t1J I + -D)U(tn))yn 

{Mil M12yl 

M21 M22 
Y 

where M11, M12, and M22 are uniformly bounded in F and 

M21= (1 + 4 4- )Cos(tn+?)cos(tn) 

x (sin(tn)cos(tn+1) - sin(tn+1)cos(t0)) + E, 

where E is uniformly bounded in F. A simple calculation using Taylor's Theorem 
shows that 

(5.9) M21= - cos2(tn)+ ( U ) for all (k, ) EF. 

Clearly, M21 is not uniformly bounded in F for any choice of the constants a * > 0 
and ko as E -> 0. Consequently, the one-step method (5.6) is not uniformly (k, E)- 
bounded in r. By part (b) of Lemma 3.1 we conclude that the one-step method (5.6) 
is not uniformly (k, e)-stable in F for any choice of the constants a* and ko. 

We now examine some numerical results which illustrate the practical impor- 
tance of uniform (k, -)-stability. Let v(t,,) = (vI(tn), vII(tn))T and vS(t,j) = 
(v'(t, ),vI1(t"))Tdenote the exact solution of (5.1) and the slowly varying part of 
v(t,,), respectively, at the grid points tn = nk, n = 0, 1,..., with k = .1. Let 
x = (Xn, xn )T and yn = (yIn, yn)T denote the solutions of (5.5) and (5.6), respec- 
tively, at the grid points tn = nk. v(tn), Vs(tn), Xn and yn were computed in double 
precision on the IBM 3081 at Brown University. Values of these quantities at 
selected grid points are listed in the following tables for the three cases E = 2.5 x 
10 3, E = 2.5 x 106 , and E = 2.5 x 10i . 
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E=2.5 x 10-3 

n ~ ~~ I(tn) VI(n) xI Yin 

O .lOOD+01 .25ID- 02 ANOD + 01 .1OOD + 01 
1 -.88ID-01 -.881D -01 -.374D + 00 -.459D + 00 

10 -.308D + 00 -.308D + 00 -.294D + 00 -.525D + 00 
50 .639D -02 .639D -02 .608D -02 .109D -01 
75 -.509D -03 -.509D -03 -.486D -03 -.868D -03 

100 .240D -04 .240D -04 .230D -04 .410D -04 
114 .1OOD-04 .1OOD -04 .956D -05 .171D -04 

nVII(tn) VII(tn) XII Yni 

O JlOOD + 01 .1OOD + 01 .1OOD + 01 .1OOD + 01 
I .900D + 00 .900D + 00 .813D + 00 .171D + 01 

10 .199D + 00 .199D + 00 .189D + 00 .339D + 00 
50 .187D - 02 .187D - 02 .180D - 02 .319D - 02 
75 .189D - 03 .189D - 03 .180D - 03 .323D - 03 

100 -.372D - 04 -.372D - 04 -.360D - 04 -.636D - 04 
114 .426D - 05 .426D - 05 .408D - 05 .727D - 05 

E=2.5 x 10-6 

nVI(tn) sI(tn) xI Yin 

O .1OOD + 01 .250D - 05 .1OOD + 01 .1OOD + 01 
I -.903D - 01 -.903D - 01 -.419D + 00 -.931D + 02 

10 -.310D + 00 -.310D + 00 -.295D + 00 -.232D + 03 
50 .646D - 02 .646D - 02 .616D - 02 .486D + 01 
75 -.519D - 03 -.519D - 03 -.496D - 03 -.391D + 00 

100 .247D - 04 .247D - 04 .237D - 04 .186D - 01 
114 .103D -04 .103D -04 .984D -05 .777D -02 

nVII(tn) 11I(tn) 11n yInI 

O .1OOD + 01 .1OOD + 01 .1OOD + 01 .1OOD + 01 
I .900D + 00 .900D + 00 .807D + 00 .925D + 03 

10 .199D + 00 .199D + 00 .189D + 00 .149D + 03 
50 .191D - 02 .191D - 02 .184D - 02 .144D + 01 
75 .192D - 03 .192D - 03 .182D - 03 .144D + 00 

100 -.381D - 04 -.381D - 04 -.364D - 04 -.287D - 01 
114 .441 D - 05 .441D - 05 .424D - 05 .332D - 02 
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e= 2.5 x 10-9 

n VI(t,,) VI(n XI nYI 

0 .100D + 01 .250D-08 .100D + 01 .100D + 01 
1 -.903D-01 -.903D-01 -.419D + 00 -.927D + 05 

10 -.310D + 00 -.310D + 00 -.295D + 00 -.232D + 06 
50 .646D-02 .646D-02 .616D-02 .486D + 04 
75 -.519D-03 -.519D-03 -.496D-03 -.390D + 03 

100 .247D - 04 .247D - 04 .237D - 04 .186D + 02 
114 .103D - 04 .103D - 04 .984D - 05 .776D + 01 

nVII(tn) 11I(tn) XII YII 

0 .100D + 01 .100D + 01 .100D + 01 .100D + 01 
1 .900D + 00 .900D + 00 .807D + 00 .924D + 06 

10 .199D + 00 .199D + 00 .189D + 00 .149D + 06 
50 .191D - 02 .191D - 02 .184D - 02 .144D + 04 
75 .192D - 03 .192D - 03 .182D - 03 .144D + 03 

100 -.381D - 04 -.381D - 04 -.364D - 04 -.287D + 02 
114 .441D-05 .441D-05 .424D-05 .332D + 01 

Remark 5.1. We list both the exact solution of (5.1) and the slowly varying part of 
the solution of (5.1) in order to illustrate Property 1.2. 

These numerical results permit us to draw the following conclusions for each value 
of e: 

(1) After a transient phase, the solution of the one-leg method (5.5) approximates 
the slowly varying solution of (5.1) accurately to one decimal place. The solution of 
the one-step method (5.6) does not accurately approximate the slowly varying 
solution of (5.1). 

(2) The solution of the one-leg method remains bounded as E 0. The solution of 
the one-step method becomes unbounded as - -+ 0. According to calculations (5.8) 
and (5.9), the only way to reduce the size of the solution of the one-step method (and 
to accurately compute the solution or slowly varying solution of (5.1)) is to reduce 
the step size k. Consequently, the one-leg method is more efficient than the one-step 
method. 

Remark 5.2. In order to efficiently solve stiff differential equations, implicit 
methods are almost always used. The concept of uniform (k, e)-stability for system 
(5.1) or (1.4) permits us to compare the efficiency of implicit formulae. That is, an 
implicit method which is not a uniformly (k, e)-stable approximation of (5.1) ((1.4)) 
will be less efficient than an implicit method which is a uniformly (k, e)-stable 
approximation of (5.1) ((1.4)). 

The tables also illustrate conclusions 1-3 which are stated at the end of Section 3. 
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APPENDIX I 

Notation. 
R5 denotes s-dimensional real Euclidean space. 
Cs denotes s-dimensional complex space. 
yT denotes the transpose of the vector y. 
A* denotes the conjugate transpose of any matrix A. 

IlYl = max,Iy M I denotes the vector norm. 
Ail = SUP,. 0 ollAy y/hIyhI denotes the subordinate matrix norm. 

A matrix or vector f(t, e) e CP(t, B) if all derivatives d vf (t, c)/dtv with 0 s v < p 
are continuous and uniformly bounded by the constant B for 0 < t < T and 
O < E < E0, where E0 > 0 is a constant. 

A matrix or vector f(t, e) e CP(t, c, B) if all partial derivatives avf1(t, E)/atvlaEV2 

with 0 < v1 + v2 = v < p are continuous and uniformly bounded by the constant B 
for 0 < t < T and 0 < E < E0, where E0 > 0 is a constant. 

Let f(Elc... , E1) and g(Ec,l , E-n) be two vectors or matrices which depend on the 
n parameters 'I,..., ,In, and are defined for all (El,..., ,En) contained in some set I. 
Then f(EJ1., , En) = O(g(,D c 

* - &n)) for all (', ,- En) E: I (or just f(ED.. , -En) = 

O(g(E ., E1)) when the set I is understood) if there exists a constant K, 
independent of EJ, ..., ,En, so that IIf(c1, ...., IEn)l < KIIg(E1, .., En)ll for all 

( c, v ,1) E I. 
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